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1 Introduction

Developing reusable robotic software is particularly difficult because there is
no universally agreed upon definition of what a robot is. Over the past half-
century, robots took many forms that spanned several domains. Some were
inspired by their biological counterparts such as humanoids, dogs, snakes, and
spiders. Others were designed for particular domains such as robotic manu-
facturing, medical and service applications, military domain, and planetary
and space exploration. They took the form of arms, wheeled robots, legged
robots, hoppers, blimps, underwater vehicles, sub-surface diggers, and even
reconfigurable robots.

While it is neither practical nor possible to address heterogeneity across
types of all robots, there are some common themes that recur among classes
of robots. In this chapter, we will summarize the challenges of developing
reusable software for heterogeneous robots and present some principles for
coping with this variability.

We arrived at these principles by doing a variability and commonality
analysis and building an application framework for a class of heterogeneous
robots. Our goal is to improve the interoperability of advanced robotic algo-
rithms through the reuse of the software that implements these algorithms.
This framework combines code reuse through class libraries and design reuse
through design patterns. This framework is called CLARAty , which stands for
Coupled-Layer Architecture for Robotic Autonomy [cla06]. It is a joint collab-
oration among the Jet Propulsion Laboratory, NASA Ames Research Center,
Carnegie Mellon, and the University of Minnesota. It builds upon numerous
contributions from universities to support the development, maturation, and
validation of robotic technologies for NASA’s Mars Technology Program.

We have built this framework by generalizing the legacy software that
was used on a number of robots through careful domain analysis [Dav06].
We have leveraged our experience in using different architectural styles to
improve software reuse and to ensure scalability of the framework. Later, we
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extended our framework to include a larger set of platforms. Expanding the
scope of the reusable software elements often requires a more general domain
analysis. This iterative process that starts with the reuse of software elements
for a small class of robots and then expands it to more general systems is
critical to reaching stable software elements. This process has to be grounded
by comprehensive design, implementation, deployment, testing, and capturing
of lessons learned from real systems.

Finding the right level of generalization for the software elements depends
on the scope of their applicability and the life cycle of the robots. Writing
application software against generalized and stable components allows up-
grading robot hardware without having to rewrite the application software.
This has been true over the life cycle of several of our robots.

Efforts to build reusable robotic software and frameworks date back sev-
eral decades. These efforts have primarily been driven by a pragmatic need
to structure the development of software to simplify the building of larger
systems. These included developing reusable robotic software libraries [HP86]
and developing application frameworks [AML87] [PCSCW98] [SVK97].

Despite earlier efforts, integrating robotic capabilities on different plat-
forms remained quite difficult. The desire for interoperability of robotic
software continued, which led to renewed efforts [jau06] [NWB+03] [Hat03]
[ACF+98] [Alb00] [VG06] [KT98], to name a few. While many techniques
have been proposed over the years, the primary challenge remains in the poor
scalability and lack of flexibility to handle the heterogeneity of robotic soft-
ware and hardware.

2 Challenges

Two paradigms have emerged for reusing software in robotics: (a) a component-
based approach where the components are concrete reusable elements and (b)
an object-oriented approach where generic abstractions are reusable elements
that get adapted to a particular context. In the first model, components are
concrete building blocks that achieve specific functionality. They are then
connected to each other statically or dynamically using architecture descrip-
tion languages (ADLs). In the second model, components are separated into
generic base classes, which define the generic interfaces and interactions with
other classes, and specialized classes that adapt the generic functionality of
the base classes for a given platform. Classes are connected through interfaces
that either statically or dynamically bind to other classes. In this Chapter,
we will primarily focus on the second model. We will present the challenges in
developing reusable robotic software and present techniques for coping with
the heterogeneity of hardware and software. These techniques leverage many
design principles of object-oriented programming and several design patterns.
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Fig. 1. From top left and clockwise: Rocky 8, FIDO, Rocky 7, ROAMS simulation,
Lemur II, and ATRV Jr. robots

The rest of the chapter is structured into two main parts. The first part
deals with challenges that result from software variability while the second
part deals with challenges result from hardware variability. These include:

• Software variability
– Software complexity
– Algorithm integration
– Architectural mismatches
– Software efficiency
– Multiple operating systems and tools

• Hardware variability
– Hardware architectures
– Hardware components
– Sensor configurations
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– Different mechanisms

Each part briefly describes the challenge and presents one or more solutions
to cope with the challenge. We also present an example from our experience
to help illustrate the point. The list of challenges below is not intended to
be exhaustive, but rather characteristic of the key areas that are common
in standardizing the development of robotic software. A more comprehensive
discussion of these challenges can be found in [NSG+06]

We will conclude with a brief description of the software capabilities that
we integrated into the CLARAty framework using these techniques. We have
successfully interoperated these capabilities on most of the systems shown in
Fig. 1, which include the Rocky 7, Rocky 8, FIDO, K9, Dexter, and ATRV Jr.
rovers and the ROAMS simulation.

3 Software Variability

3.1 Software Complexity

Challenge: How To Decompose a Robotic System

Robotic software is already complex because of its multi-disciplinary nature,
but doing so with an objective of supporting new platforms and algorithms
that are not known a priori is a real challenge. This process requires developers
with both a depth of knowledge in robotics and a breadth of experience and
skills in the field.

Solution: Decompose to highlight stable behaviors and not run-time
implementations

Some system decompositions highlight the runtime model of the system, while
others highlight the abstract behavior of the components hiding the runtime
implementation. Under different hardware architectures, the runtime imple-
mentation of components changes making it necessary to encapsulate. The
abstract behavior of components is more stable across applications.

Example: Image acquisition

To illustrate this point, consider the example of an imaging system. The pri-
mary function of such a system is to acquire images. How the imaging system
acquires the images depends, largely, on the underlying hardware. In some
systems, an analog camera is connected to a frame grabber that is mounted
in a backplane. In other systems, a digital camera is used to transmit images
over a fast serial interface directly to the host’s memory. In either case, the
primary function of the imaging system remains the same, i.e. to acquire still
images or a video stream. We can represent such a system by an abstract
camera component that publishes a uniform interface but hides the details of
its implementation and the runtime models that accomplish the image acqui-
sition.
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Challenge: How To Organize the Software

Complex applications require a large amount of software to be managed, in-
tegrated and deployed. The primary challenge in decomposing the system is
to define where to draw the lines. This largely depends on what elements of
the software are targeted for reuse by future applications.

Solution 1: Decompose into small modules rather than large packages

It is then natural to think of decomposing the system into packages that
mirror the robotic domains. However, these packages often contain a large set
of functionalities where only a few may be needed by an application. Working
at the granularity of packages incurs a larger overhead when only a small part
is desired. The guiding principle here is to ensure that simple functionalities
are easy to implement, while complicated functionalities can be more complex.

Therefore, it is preferable to decompose robotic software into smaller mod-
ules as opposed to larger packages. Each module provides primarily a single
capability but contains a collection of software with high cohesion and fewer
interactions with other modules. A system will then be composed of a number
of inter-dependent modules. A module usually contains a set of abstractions
that are closely related to one another and that are managed as a group. A
module defines the smallest deployable software collection. It is managed as
a unit for repository access, building, and testing. Packages are then a loose
grouping of modules where multiple packages share common modules. These
are primarily used to simplify the description of an overall system.

Example: Vision package

A vision package may contain stereo processing, visual odometry, structure-
from-motion, visual tracking, image processing, object finding, template match-
ing, and camera modeling capabilities. An application that only requires stere-
ovision would only need to use the stereo processing and camera model mod-
ules without having to checkout and build the remaining modules. A vision-
guided manipulation application would pull in only a subset of vision and
manipulation modules as opposed to two entire packages.

Solution 2: Use explicit inter-module dependencies

Communicating using strongly typed messages ensures properly matched in-
terfaces for information flow among modules. It also enables the tracking of
interface changes at compile time rather than at run-time. Decoupled mod-
ules, on the other hand, do not share a common infrastructure and end up
with implicit dependencies on data format to exchange information among the
modules. Both the format and context of these data packets would need to
be tracked and verified to ensure compatibility between senders and receivers.
While a loosely coupled system may be easier to build, it is harder to track
through the life cycle of the software.
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Using explicit inter-module dependencies also enables the automation of
inter-module dependencies. This is important as the number of modules grow
in the system. Without the ability to check out and build parts of a generic
robotic repository, it becomes too complex and unwieldy to use.

Example: Checking out modules

Because robotics is multi-disciplinary, it is not unreasonable to expect hun-
dreds of modules especially as each capability may have multiple implemen-
tations from different institutions. Today, the CLARAty software repository
contains over 400 modules, which includes hardware adaptations to half a
dozen platforms. Because any given application only exercises parts of this
reusable software repository, we use an automated process for tracking mod-
ule dependencies to hide the complexity of managing these dependencies. For
example, checking out and building the robotic manipulation software requires
modules for arm control, motor, trajectory generator, and mechanism model.
It would not be necessary to include other modules.

In another example, rover navigation that can use one of three algorithms
for estimating the rover pose: a wheel-odometry pose estimator, a visual-
odometry pose estimator, or multi-sensor pose estimator. Depending on the
desired technology, the software checkout and build will be different for each
configuration.

Solution 3: Define a common vocabulary

Decomposing the system into modules and abstractions defines a common
vocabulary that describes the entities and their functionality. There are two
types of modules: generic and specific. Generic modules declare abstract in-
terfaces that describe the language of inter-module interactions, which defines
the generic framework. Specific modules adapt the framework to various al-
gorithms and platforms.

Example: Locomotor and stereovision

A locomotor module describes the generic constructs and interfaces for robotic
mobility in the most abstract sense. This module is general enough to apply
to any type of wheeled or legged mobile platform. A wheel locomotor mod-
ule describes the generic constructs and interfaces for all wheeled vehicles
(Fig. 15).

An example of generic and specific modules relates to the stereovision ca-
pability. A generic stereovision module contains the data structures and inter-
faces that define the stereovision capability. The specific stereovision modules
contain different stereovision algorithms that implement that interface. Each
stereovision implementation resides in its own module.
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Solution 4: Avoid unnecessary code duplication and overgeneralization

To keep the complexity manageable, and to simplify the various pieces, it
becomes necessary to reduce code duplication as much as possible across do-
mains. This raises the question of when is it appropriate to encapsulate a new
algorithm vs. refactor it to leverage a common infrastructure. The decision
is often influenced by non-technical factors involving the nature of the tech-
nology, the expertise necessary to re-implement the algorithm, the return on
investment, and the long-term plan to support the algorithm as part of a com-
mon framework. Because any reusable robotic system is doomed to become
enormous, it is strongly desirable to make the code repository complementary
rather than duplicative.

Using the proper class decomposition and proper generalization of inter-
faces to cover a larger scope helps reduce unnecessary code duplication. Proper
class design, however, should avoid overgeneralizations and large abstractions
that can become hard to maintain. As capabilities grow and their correspond-
ing classes and modules grow, one would refactor classes and split modules
into smaller ones to maintain a manageable level of complexity.

Example: The Matrix class

To keep data structures maintainable, the Matrix class in CLARAty in-
cludes only basic operations such as matrix data management (inherited
from N2D Array), addition, subtraction, multiplication, and scalar operations.
It does not include functions such as Lower-Upper decomposition, inverse,
pseudo-inverse, Cholesky decomposition, and singular value decomposition.
These are implemented as separate matrix operations. We separate the ma-
trix module that defines the structure and basic operations from the matrix op
module that includes these complex and mathematically intensive operations.
This keeps the matrix module and the Matrix class light-weight and simple
and allows an Image class to derive from the Matrix class, thus leveraging its
basic matrix operations. So, if someone needs to use the Matrix data struc-
ture, they do not have to always incorporate the software that includes these
mathematically intensive operations.

3.2 Algorithm Integration

Challenge: Different Programming Paradigms

There are two different programming paradigms that are used to develop in-
telligent robotic software: declarative programming and procedural program-
ming. Declarative programming has dominated software developed by the ar-
tificial intelligence community while procedural programming has dominated
software developed by the robotics community.
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Rover.navigate_from_to(Loc1, Loc2)

Preconditions: near(Loc1,Loc2)

rover.has_power(Loc1,Loc2)

rover.has_time(Loc1,Loc2)

Effects: rover.is_at(Loc2)

If near(Loc1,Loc2) AND

rover.has_power(Loc1,Loc2) AND

rover.has_time(Loc1,Loc2) AND

Then: rover.navigate_from_to(Loc1,Loc2)

Procedural ProgrammingDeclarative Programming

Rover.navigate_from_to(Loc1, Loc2)

Preconditions: near(Loc1,Loc2)

rover.has_power(Loc1,Loc2)

rover.has_time(Loc1,Loc2)

Effects: rover.is_at(Loc2)

If near(Loc1,Loc2) AND

rover.has_power(Loc1,Loc2) AND

rover.has_time(Loc1,Loc2) AND

Then: rover.navigate_from_to(Loc1,Loc2)

Procedural ProgrammingDeclarative Programming

Fig. 2. Declarative vs. procedural programming

Solution: Separate declarative and procedural programming into overlapping
layers

These two programming paradigms are quite different for building robotic
intelligence. In declarative programming, a programmer explicitly describes
the activities, models, and constraints but does not provide any program
logic (sequences, conditionals, and loops) that describes the order of execution.
The program logic is automatically generated and updated by a search-engine
that examines all constraints and maintains a plan to order activities without
violating these constraints.

Conversely, procedural programming describes the program logic and
hence readily provides the program logic that contains the order of execution
using activity sequencing, conditionals and loops. The execution flow is only
altered through conditionals, exception, and dynamic binding. While declar-
ative programming has infinite flexibility in ordering activities compared to
procedural programming, it requires computational resources to generate the
program logic and requires that all specifications and constraints be explicit.
In procedural programming, specifying the sequence of activities implies the
order constraints. Fig. 2 show a simple example of the two programming
paradigms.

Because of their fundamental differences in formulating program logic,
we recommend to separate the twp programming paradigms into two layers.
The declarative programming portion of the software is often referred to as
the decision layer while the procedural programming portion is referred to
as the functional layer. Where the two layers meet continues to be an active
area of research. An architecture where the two layers overlap provides the
developers the flexibility to specify where they draw the line between the two
layers. Because declarative programming is ideal for situations where the order
of activity is less constrained (i.e. many activities can occur concurrently), it
tends to dominate higher levels of the application software. On the other hand,
procedural programming dominates mid- and lower-level software controls,
which have a more constrained sequence of operations.

Challenge: Loosely- vs. Tightly-Coupled Integration Model

Selecting the appropriate model for integrating algorithms largely depends
on the nature of the algorithms to be integrated. There are several models
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for integrating robotic algorithms. Some models promote a looser integration
where algorithms are encapsulated and wrapped into a framework, while other
models promote a tighter model where algorithms are refactored to share a
common infrastructure.

Solution: Support different levels for algorithm integration

Using a tightly-coupled integration model where data structures are consis-
tent is more efficient, scalable, and less error-prone than a loosely-coupled
model. In a loosely-coupled model where algorithms are encapsulated, data
structures have to be converted and mapped from one format to another.
This is particularly difficult when memory is managed differently between the
framework and the algorithm. Encapsulating algorithms results in redundancy
and inconsistency in data representations among components, which can be
subject to misinterpretations. It also leads to larger code bases, which can
be harder to debug. However, embedded algorithms are easier to develop at
remote institutions and have the least constraints especially when multiple
institutions are involved. Using a loosely coupled model, developers may inte-
grate subsystems fairly quickly for proof-of-concept demonstrations. But the
resultant system is often fragile, hard to maintain, and does not scale well as
the system evolves. Integrating using a loosely-coupled model is appropriate
when the interface is small and limited information needs to be exchanged
with that algorithm. As algorithms get more sophisticated, the information
that is exchanged gets more complex. Integrating using a tight model requires
a shared infrastructure.

On the other hand, using a tightly-coupled integration model where al-
gorithms are refactored or implemented against a framework leads to more
efficient implementations that are internally consistent and easier to debug.
However, they require a commitment to a given framework making the algo-
rithms framework dependent. Therefore, such a framework has to be widely
accepted and available, mature and stable enough for developers to adopt and
use.

Example: Advanced navigation

Consider a navigation algorithm that uses three-dimensional information from
its stereovision sensors to select paths that avoid obstacles. An implementation
of such an algorithm for indoor navigation would only need static kinematics
information about the robot (robot dimensions and types of maneuvers the
robot is capable of). A more sophisticated version of this algorithm for use
in rough outdoor terrain would also need to incorporate real-time dynamic
information from the system. So, as algorithms increase in sophistication, the
information and its flow get more sophisticated requiring a richer interface.
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Challenge: Redundant Data Structures

Because robotics brings together many domains, software packages are often
developed for these domains independently. Bringing together domain pack-
ages results in a duplication of data structures.

Solution: Maximize reuse through a cross-domain perspective on data
structure classes

Take a global perspective to share common data structures to reduce unnec-
essary code duplication and reduce overall complexity. Common structure can
be refactored into base classes that are cross-domain. Robotics software covers
different domains such as motion control, locomotion, manipulation, vision,
estimation, planning, scheduling, resource management, and health monitor-
ing. Locomotion, manipulation, vision and estimation domains require similar
math and coordinate transformation infrastructure.

Data structures do not invoke threads; they run in the context of the cur-
rent thread. This makes them the easiest to implement and port on multiple
operating systems. Data structures can be general-purpose or domain-specific.
General-purpose structures are reusable beyond the scope of robotics applica-
tions. The Standard Template Library provides an example of general-purpose
data structures. Domain specific data structures include math (matrices, vec-
tors, points), rotation matrices, quaternions, transformations (homogeneous
and quaternion transforms), point clouds, paths, fuzzy sets, and so on. De-
composing software into entities that share a common infrastructure enables
a more integrated, efficient, and consistent data flow across the system.

N2D_Array

Element_Type

Matrix

Element_Type

Image

Pixel_Type

RGB_Image

Pixel_Type

2

Grid_Map

Cell_Type

Plane_Fit_Map

Cell_Type

Goodness_Map

Cell_Type

N2D_Array

Element_Type

Matrix

Element_Type

Image

Pixel_Type

RGB_Image

Pixel_Type

2

Grid_Map

Cell_Type

Plane_Fit_Map

Cell_Type

Goodness_Map

Cell_Type

Fig. 3. Data structure abstractions
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Example: The Array hierarchy

Fig. 3 shows the array hierarchy that is used in CLARAty . Several data
structures use two-dimensional arrays. As a result, a base N2D Array class
is defined to manage the contiguous storage of two-dimensional information.
It provides functions to allocate, resize, retrieve rows and columns, access
individual elements, manage sub-arrays, serialize and display the contents
of the array. Array elements are not assumed to be numeric. A Matrix class
extends the Array class to include numerical operations. Managing the storage
of the Matrix elements is handled by the N2D Array class. The Image class
extends the Matrix class to include image specific functions such as pixel
interpolation. Another set of classes that extend the Array class is the Grid
and Plane Fit Map classes that are used for navigation. These classes are two-
dimensional arrays whose elements are complex types: the Grid Cell and the
Plane Fit Cell respectively. This example shows how the vision package, the
navigation package, and the math package all share a common data type.

Challenge: Different Representations of Information

In robotics, there are multiple ways of representing the same information.
Algorithms developed in isolation will most likely use different representations
of information. Without agreement on these representations, algorithms will
be required to deal with these conversions in an ad hoc manner, leading to
loosely integrated and inefficient software.

Solution: Use generic programming with templates to support multiple
representations efficiently

Because a framework integrates multiple algorithms from multiple sources, it
needs to support different representations of information in its data structures.
Data structures have to be efficient in dealing with multiple representations,
so using polymorphism through inheritance to handle the different representa-
tion is neither efficient nor sufficiently flexible for mathematical types. Virtual
inheritance adds the overhead of a pointer to the virtual table for every object
and cannot support inline functions, which are critical for efficient operations.
Instead, use template binding to provide both the efficiency and flexibility
in these instances. Façade classes [GHJV95] can then be used to provide a
simple interface to the user to develop against. The principle here is to pro-
vide a wrapper façade class that simplifies their use but keeps the underlying
foundation flexible.

Example: Transforms

We can describe rigid body orientations using multiple mathematical represen-
tations such as: Euler angle, rotation matrices (i.e. direction cosine matrices),
or quaternions. Euler angles are described by three floating-point numbers;
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Rotation_Matrix

Element_Type

Transform

Element_Type

Rotation_Type

Quaternion

Element_Type

H_Transform Q_Transform

Element_Type Element_Type

Rotation_Matrix

Element_Type

Transform

Element_Type

Rotation_Type

Quaternion

Element_Type

H_Transform Q_Transform

Element_Type Element_Type

Fig. 4. Coordinate transformation classes

rotations by 3 × 3 matrices; and quaternions by a single number scalar and
a 3 × 1 vector. These representations have different characteristics in terms
of efficiency and ease of use/understanding. Conversion between them is both
inefficient and error prone. This is especially true when dealing with their
covariances.

Orientation is an integral part of a coordinate transform that consists of a
translation and an orientation. Transforms can use any orientation representa-
tion. To represent that in software, we develop a transform as a template class
of two types: rotation type and element type. The latter defines whether the
elements use single- or double-precision floating-point numbers. Fig. 4 shows
the relationship between the Transform class and the Rotation Matrix and
Quaternion classes.

A transform that uses a rotation matrix for its orientation is called a homo-
geneous transform. A transform that uses a quaternion is then called a quater-
nion transform. A homogeneous transform is mathematically represented as
4 × 4 matrix with the 3 × 3 rotation matrix and a 1 × 3 translation vector.
Quaternion transforms do not have an equivalent mathematical representa-
tion. However, thanks to operator overloading, we can think of quaternion
transforms as mathematical equivalents to homogeneous transforms. These
specialized transform classes are derived from the template transform class by
binding their rotation types to the corresponding orientation class: the quater-
nion transform binds to the Quaternion class and the homogeneous transform
binds to the Rotation Matrix class. This way both types of transforms share
a flexible templatized core without exposing users to the complexities of the
template implementation.

Challenge: Generalized Interfaces

Once the proper decomposition of modules and classes is defined and once
the major inter-class operations have been defined, the next challenge is in
the design of the class interfaces. Defining proper interfaces is not a trivial
task. Generic interfaces need to be stable and mature, but that can only be
accomplished by exercising these interfaces across a number of heterogeneous
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robotic platforms over several years. It is the maturity of the class decomposi-
tion, inter-object communication and class interfaces that define the system’s
detailed architecture.

Solution: Define comprehensive interfaces

Each class needs a complete set of interfaces for application developers to ef-
fectively use it. Minimal interfaces are often insufficient. Common base classes
for certain types simplify the interface definition of many functions. Devices
that represent physical and functional components such as motors, sensors,
instruments, manipulators, stereo processors, and navigators are derived from
a simple Device class. Therefore, one can use the Device class type to keep
the interfaces generic. For example, an end effector can be of Device type to
enable a robotic arm to connect to any child of Device.

When crafting a generalized interface, it is often the case that neither the
union of all possible capabilities nor the intersection of such capabilities (least
common denominator) is satisfactory. The solution often lies somewhere in
between. In some cases, it is necessary to split the interface into two distinct
units and lose the ability to interoperate between the two. This occurs when
it is necessary to highlight the differences between platforms rather than their
commonality. Trying to find the single unified interface can sometimes lead to
undesirable over generalizations.

Example: Locomotor and manipulator interfaces

It is insufficient to provide only move functions for a wheeled locomotor class.
Additional functions are necessary to control the overall speed and acceler-
ation of the moves as well as stop the robot under normal and emergency
conditions. We also need to have functions that access the locomotor’s state
(moving, stopped, or goal accomplished) and query for the actual speed and
acceleration. All these functions are necessary to support the move capabil-
ity. Further extensions may also include selecting the point on the robot’s
rigid body to control (as opposed to the default center of mass). They also
include defining functions to move the rover along paths as opposed to way-
point moves. So it is necessary to provide a complete set of capabilities to
support a single functionality.

One limitation of generic interfaces is the ambiguity they may yield. Con-
sider the example of a four degree-of-freedom (DOF) arm where the three-
dimensional position of the end effector can be specified but with only one
degree of orientation. A generic manipulator interface would have to support
the more general pose (x, y, z, roll, pitch, yaw). If the generic interface is used
to pass information to a limited degree-of-freedom arm, then a scheme has to
be developed to handle the additional degrees of freedom. One may chose to
report an error, ignore these extra terms or achieve the best that the limited
DOF arm can do.
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Challenge: Unstable Interfaces

Changes to the generic class interfaces reduce the stability of a framework
and impact all applications that use the interface. Semantic changes can be
checked at compile time, but behavioral changes are harder to manage.

Solution: Use complex data types to stabilize interfaces

While a complete stabilization of interfaces in a generic robotic framework
may not be feasible, there is a strong need to minimize the impact of software
changes on the generic interfaces. Using complex data types as opposed to
primitive types significantly improves the stability of the interfaces. Complex
data types hide the details of the implementation allowing the interface to
be described using higher-level abstractions. The design of the data types,
therefore, becomes of critical importance. The hierarchy of the data types
determines what types can be used interchangeably.

There is no single data structure that dominates in a generic framework.
While overgeneralizing interfaces to use a single common type provides the
most flexibility, it defeats the purpose of a strongly-typed system. Strong
type-checking is critical to ensure compatible interfaces and eliminate errors
that result from the mapping of different primitive types. Without strong
type-checking at the interfaces, changes to data structures cannot be properly
managed.

Example: Camera interface

A Camera class has an interface to acquire an image. The interface can use
the raw image data as follows:

camera.acquire(char* data, int nrows, int ncols)

or it can use an Image class to hide the details of the image implementation
as follows:

camera.acquire(Image & image);

In the former case, adding a field to the image, such as image offset, impacts
the acquire interface causing it to be changed to:

camera.acquire(char* data, int nrows, int ncols,

int srow, int scol)

However, such a change does not impact the latter implementation because
that change would be encapsulated in the Image class and will not be visible
in the camera acquire interface.
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3.3 Architectural Mismatches

Unless developed against a framework, robotic software components are likely
to have architectural mismatches with the frameworks into which they will
be integrated. Consider, for instance, a framework that does not time-stamp
measurements collected from various devices. Now consider an algorithm that
collects data asynchronously and requires time-stamped measurements. If the
underlying framework does not support time-stamped measurements, we have
an architectural mismatch. Similar situations occur when an algorithm re-
quires high bandwidth information that may not be available on some plat-
forms.

Another issue is with components that integrate orthogonal functionality
into a single modular unit. This introduces artificial coupling of functionalities
driven by a specific implementation. While such coupling may optimize local
performance, this often comes at the expense of global optimality.

Challenge: Mixing Units

Errors that result from mixing units can lead to catastrophic failures. When
integrating heterogeneous algorithms from multiple institutions, it is impor-
tant to pay careful attention to the inter-mixing of units.

Solution: Use a consistent representation of units

One possible solution is to develop algorithms and models that strictly use
the Systeme Internationale (SI) units. This will certainly reduce the overall
complexity, which is quite important in robotics. Allowing for a mix of units
would otherwise require the use of tools and techniques to ensure proper unit
conversion.

Several packages have been developed that use template-based classes to
do unit checking at compile time. However, the use of unit conversion tools has
some limitations and may give a false sense of assurance. This is particularly
evident when dealing with larger data structures.

Another consideration for units is to keep the internal representation of
units consistent, but support mixed units in the input and output files. This
localizes the portions of the code that have to deal with mixed units to those
handling file I/O operations, which frees up the rest of the software from
having to deal with mixed units.

Example: The Image class

Consider a range image. It is desirable to have the units attached to an entire
image as opposed to the individual pixels, which would otherwise double the
size of an image. However, when doing pixel-based operations such as project-
ing a pixel to its three-dimensional world location, that pixel needs to ensure
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that it retrieves the proper units from the image prior to any geometric com-
putation. The complexity of adding compile-time unit checking and the risk
that will result from the misuse should be weighed against the benefits of unit
checking. But whether one chooses to adopt such a framework or use a units
standard, that decision has to be made explicit.

Challenge: Representing Uncertainty

One of the primary challenges robots face is dealing with the uncertainty of
the environment they operate in. Representation and reasoning about uncer-
tainty is of primary importance. However, because different algorithms may
use different representations of uncertainty, interpreting uncertainty becomes
quite complex.

Another challenge relates to the assumptions and approaches that algo-
rithms use. An algorithm for an industrial robotic arm, where precise motion
and machined fixtures are expected, may handle uncertainty differently from
that of an arm mounted on a rover operating in an unknown environment.

Solution: Use templates to represent uncertainty

To handle estimates and their uncertainties properly, use special template
classes where the template arguments represent both value and its uncer-
tainty as: Estimate<Type,Uncertainty_Type>. While this provides a data
structure to capture the data representation, it does not address how this
data is interpreted.

Functions that reason about system uncertainty, which are primarily used
in estimation, need to use these template constructs to pass information
around. Even though the majority of robotic applications use a Gaussian-
based distribution, there are other distributions that algorithms use.

Example: Pose uncertainty

In its simplest form, a single variable such as a rover’s heading can be rep-
resented as an estimate with a mean and a variance. This assumes a prob-
ability density function with a Gaussian distribution. Both the heading and
the variance can be represented as single floating-point numbers. A rover’s
(x, y) position with cross correlation between its x and y values will have a
2 × 2 covariance matrix to represent the cross-correlation terms of x and y.
So, an Estimate<double,double> is used for single-valued estimates, and an
Estimate<Vector,Matrix> for a vectors and their covariances.

Challenge: Different Time Representations

Algorithm implementations may have different representations of time. They
may also make different assumptions about information flow, which have to
be reconciled with the framework.
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Solution: Use abstract clocks and timers

To manage time, interface the software to clock abstractions as opposed to
interfacing directly to the real-time clock. While it may not be quite obvi-
ous why managing time is critical for robotic applications, this becomes quite
evident when robotic control software is interoperated between real and simu-
lated platforms. On real platforms, it is natural to tie the system clock to the
real-time clock. However, when the same software is run against a simulator,
a number of options become available. Robotic control software has now the
option to run faster or slower than real time. It can also control the stepping of
a simulator’s clock, enabling the use of otherwise computationally prohibitive
control algorithms.

Timers attach to clocks and provide the ability to set, reset and advance
time. Tying timers to Clock abstractions keeps time management consistent
within a robotic system. Timers are used for measuring time intervals for
trajectory generators and planners.

In robotic control applications, barring some exceptions1, time can be
largely used in a relative rather than an absolute sense. A robot needs to
know the duration of its functions and activities. Absolute time comes into
play when planning a day’s worth of activities.

Representing time-values also require some attention. To ensure precise
time representation, people use integers to represent absolute time. A single
64-bit integer is insufficient for absolute time measurements of microsecond
precision over decades. Therefore two such integers are necessary. However,
mathematical operations will require conversion of such integral values to
floating-point numbers. Since the majority of time in robot control software
is relative, a single integer or a double precision floating-point representation
may be sufficient.

To avoid inconsistencies in time representation and to avoid improper mix-
ing of real-time and simulated time, a framework needs to develop a consistent
set of these time-based abstractions.

Challenge: Managing Periodic Activities

A single runtime model is often insufficient to handle all aspects of a robotics
system. Robotic systems require both synchronous and asynchronous execu-
tion of different activities. Some activities have to run periodically at different
frequencies. Activities need to be synchronized with other activities. Manag-
ing periodic activities can be challenging especially as its execution depends
on the underlying operating system.

1 Sun sensors are used to determine a rover’s absolute heading using the sensed
location of the sun in the sky together with ephemeris data and knowledge of the
absolute time of the day.
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Solution: Use Periodic Thread and Periodic Object abstractions

Using Periodic Thread and Periodic Object abstractions provides a consis-
tent way of handling periodic execution across a system. The Periodic Thread
(task) uses the aforementioned time-based abstractions in its implementation.
It is responsible for creating a thread and scheduling the periodic execution of
registered activities. It also checks the duration of each activity in order not to
exceed the assigned interval. The Periodic Thread class can only register ac-
tive objects. Active objects inherit from the Periodic Object base class, which
defines a single pure virtual execute method. Active objects then implement
this execute method.

The periodic thread uses the time-based abstractions and the thread ab-
straction to be independent from the underlying operating system. However,
if the operating system is a soft real-time, then the periodic thread will only
achieve the desired frequency on average. Recording execution statistics about
the duration of the activities and the number of skipped activities provide nec-
essary inputs on the performance of the system.

A robotic system typically has a number of concurrent periodic threads.
These include periodic updates to motor controllers, trajectory generators,
closed-loop locomotor controllers, and pose estimators. These periodic threads
may run at different frequencies depending on the application and hardware
configuration.

Challenge: Runtime Models are System Dependent

Runtime models define the processes and threads that are concurrently run-
ning in the system. Because of the variability in hardware architectures and
because functionality can be migrated to embedded processors, the runtime
models for software change with each platform. Furthermore, both the content
and pathways of the information flow change with various device and system
configurations, as well as with different application programs.

Solution 1: Separate generic from specific runtime models

It is necessary to separate the generic runtime models from the specific ones.
Specific runtime models are system dependent. Therefore, it is necessary to
encapsulate these models. The generic and specific runtime models should
complement one another to maintain the same abstract behavior.

Example: Motor control

Some systems use motion control chips to servo the motor and generate local
trajectories while others do so using software (Fig. 8). The behavior of the
Motor class after attaching to either adaptation should remain the same. How-
ever, the runtime model for each will be different. In the first case, where the
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servo loop and trajectory generation are done in hardware, the motor adap-
tation communicates with the controller chip to send trajectory parameters,
set control parameters, and retrieve motor information. In the second case
where the motor control is done in software, an additional thread is necessary
to periodically compute the trajectory set-points and servo control outputs.
The control rate is set by the user.

While these two systems have different threading models to match their
control architectures, their abstract motion control behavior should remain
the same. The implementation details can be hidden from a person trying to
develop a manipulator or a locomotor.
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Fig. 5. Motor state machine

Some runtime models, however, can be generic. Consider the motor state
machine shown in Fig. 5. This state machine is generic for all controlled mo-
tors. It is a hierarchical state machine with parallel states for the motor. The
state diagram shows that the motor can either be in a MOVING or NOT
MOVING state and at the same time be in a SERVOING or NOT SERVO-
ING state. For instance, the motor can be in the NOT SERVOING state and
the MOVING state at the same time if the motor moves as a result of ex-
ternal forces such as gravity pull on a robot on a slope. From any of these
states, the motor can go into a fault state, which is followed by a transition to
the recovering state before resuming normal operations. Such an implementa-
tion resides in the generic Motor class and describes the operation modes of
the controlled motors. Adaptation of the generic Motor class can extend the
state machine to include the specialized modes for the particular hardware
component.

Solution 2: Encapsulate runtime models

It is not uncommon to off-load the processing of a computationally intensive
algorithm to a separate processor. So, what does this mean for the software
system? Since the component interactions are through class interfaces and
since the run-time models are encapsulated, we can relatively easily off-load
the implementation without impacting the rest of the software.
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Fig. 6. Navigation abstractions

Example: Remote terrain analyzer

Fig. 6 shows the navigator class, which is one of the robot’s behaviors. This
class aggregates a locomotor and an action selector. The action selector can
either use a grid-based representation of the world or a vector-based one.
The grid-based representation that uses a terrain evaluator is computationally
intensive because it operates on large data sets. As a result, the grid-base
selector is a good candidate to off-load to a separate processor. The framework
then implements a specialized grid-based selector that is a proxy to the real
implementation. This proxy class is responsible for transferring the terrain
and mechanism information to a remote grid-based selector, which in turn
computes the data and returns the information to the proxy. The proxy and
remote objects can use any communication protocol to exchange the data.
However, the implementation is encapsulated such that the grid-based selector
and the rest of the navigator classes do not need to know where the processing
is taking place. Migrating functionality from one processor to another will be
seamless. This is true with the exception of the initialization step that will
require a definition of where computation occurs.

Challenge: Synchronous and Asynchronous Models

The primary challenge that arises between centralized and distributed systems
is in the nature of information flow. In a centralized system, information flow is
easily synchronized, while in a distributed peer-to-peer network, information
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flow and processing is asynchronous. A distributed system in a master/slave
configuration is closer to a synchronous system.

Solution: Enable forward processing with constructs to synchronize activities

To ensure a responsive system, device objects must be thread safe and func-
tions must support non-blocking modes. Move functions that do not block
enable resumption of processing (i.e. forward processing) during a motion.
However, it is necessary to provide control over the forward processing. There-
fore, we need a function that can block on conditionals such as the percent
completion of a move.
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Fig. 7. Motor run-time models

Example: Motor thread model

Fig. 7 shows two possible runtime models for the Motor class. The function
wait_until_done(%) is used to control when the rest of the sequential pro-
cessing can continue. In the first scenario, the motor is asked to change its
position immediately, then wait until the motion is 45% complete before con-
tinuing to process that thread. At that instance, the thread blocks until that
condition is met and then resumes execution. The motor continues to move
while the motor class reads the current position. In the second scenario, there
are two threads that communicate with a single instance of the class. The first
thread issues a change in position and continues processing other functions.
The second thread, which runs in parallel, queries the same Motor instance
for the current position. The Motor class supports this parallel interaction
and manages the communication link that ties it to the physical hardware.

Challenge: Shared Resources

A robotic system has a number of shared resources that need to be man-
aged. Different resources may need to be managed differently depending on
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the urgency of the request for these resources. Shared resources in a robotic
system include all sensors, actuators, hardware buses, digital and analog I/O,
power, memory, and computational time. Multiple applications (clients) re-
quire concurrent access to shared resources for controlling various aspects of
a robot.

Solution: (1) Protect data integrity using guards; (2) use reservation tokens
to manage devices; and (3) manage activities with a global planner

Concurrent access to data requires the proper use of guards to protect data
integrity. One can use several mechanisms for multi-threaded inter-object com-
munication. Critical sections are easy to implement but can only be used when
the protected operations are very limited in scope and are time bound. Crit-
ical sections disable system interrupts and can impact the responsiveness of
the operating system. For small data structures, message queues are used.
They require a copy of the data, but for a single consumer, such an overhead
is acceptable for relatively small data structures. However, this can be quite
costly for larger data structures such as images. In such instances, private
member data are read and written using proper thread-safe read and write
guards.

The above mechanisms can be used to manage resources at small time-
scales that require fast context switching. However, using a resource for larger
time-scales requires additional flexibility for managing these resources. For
large time-scales, one can use reservation tokens where only one client can
control a particular device. Only the client that has the token can command
that device. However, multiple clients can query the device for information.
Overriding reservation tokens is also necessary for handling emergency condi-
tions.

Example: Shared camera

Consider a rover with two stereo camera pairs: one mounted on the front of the
rover body while the second is mounted on an articulated pan/tilt mast head
(see Rocky 8 in Fig. 1). The rover can acquire images and track targets from
the articulated mast head independently of what the rover navigator is doing.
These two applications use different cameras and mechanisms (mobility vs.
mast pan/tilt). However, both algorithms share a FireWire bus and a motion
control bus. Managing these shared resources efficiently provides a system
where the two applications operate in parallel.

Algorithms that operate in high-speed robotic system running concurrent
activities must address computational latency to ensure correct behavior. A
high-speed mobile robot running visual pose estimator in continuous mode
needs to handle the latency between the time the data is acquired and the time
the estimate is computed. In such situations, an additional step is necessary
to compensate for the changes in rover state to produce the most accurate
information about the robot’s pose.
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3.4 Software Efficiency

Challenge: Software Efficiency

Developing efficient algorithms using a generalized framework can be quite
challenging. No one wants to trade performance for generality. Generality and
flexibility may seem at odds with performance and memory efficiency. Despite
the continued increase in available computational power and communication
bandwidth, it is necessary to keep the performance of the generic software as
close as possible to a custom solution.

Solution: (1) Use common data structures; (2) use templates for math; and
(3) use inline functions

An application framework must pay particular attention to avoiding unnec-
essary copying of data when exchanging information among modules. This is
particularly important when using component/connector style interfaces. The
framework can also avoid accidental complexities that arise from isolated de-
velopments, which require transforming data from one form to another. Many
techniques such as common data structures, the use of templates for low-level
classes, and the use of inline functions can provide abstractions without the
run-time overhead.

3.5 Multiple Operating Systems and Tools

Challenge: Hard vs. Soft Real-time

Many challenges stem from the differences in the runtime architecture of pro-
cesses and threads that are used in current operating systems. Furthermore,
some operating systems provide hard real-time scheduling guarantees while
others provide soft real-time performance.

Solution: Use standard tools for operating system independence

To make the robotic software portable, it is necessary to build the software
for different hardware architectures, operating systems, and compilers. This
process also improves software reliability by eliminating nuances specific to an
architecture, an operating system or a compiler. Third party packages such as
POSIX and ACE (Adaptive Communication Environment) develop standards
that cope with differences in operating systems. Proper handling of little and
big-endianness, and the use of ANSI standards for compiler support ensure
robust and portable software. However, the cost of developing and maintaining
portable software has to be taken seriously into account. Another important
aspect of this is the ability to transition from hard real-time operating system
such as VxWorks, RTAI Linux, or Integrity, to software real-time system such
as Linux, Solaris, Mac OS X, or Windows.
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4 Hardware Variability

4.1 Hardware Architectures
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Fig. 8. Centralized (left) and distributed (right) hardware architectures

Challenge: Different Hardware Architectures

While at first, it may seem that adapting abstractions directly to hardware
components is all that is necessary to interoperate across robotic platforms,
this assumes that the hardware on the various platforms is similar in archi-
tecture. This is rarely the case. Most robotic systems have different hardware
architectures. On one end of the spectrum, there are robots that use a cen-
tral processor to generate the motor control laws, motor trajectories, and run
the application software. Such systems have their analog and digital signals
mapped to memory registers on the central processor, which makes the de-
velopment of software relatively easy (see Fig. 8). They are very flexible for
changing the control laws and coordinating motors, but they lack hardware
modularity and can be hard to extend and repair. On the other end of the
spectrum, there are systems that migrate much of their control to firmware
in distributed nodes in order to improve modularity and reduce the load and
real-time requirements on the central processor. They communicate with each
other via formatted data streams sent over serial buses. Other systems fall
somewhere within this spectrum.

There are similar differences in image acquisition and inertial sensing hard-
ware. Some systems use high quality analog cameras with centralized image



Coping with Hardware and Software Heterogeneity 27

acquisition boards (frame grabbers) while other systems use digital cameras
connected through a serial bus (FireWire or USB). Inertial sensors can either
be analog sensors integrated through a central processor or an integrated unit
that communicates to a processor through a serial interface. A general frame-
work must be sufficiently flexible to handle these variations in the hardware
control architectures, which has significant impact on information flow.
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Fig. 9. Multi-level software access

Solution: Use hierarchical multi-level abstractions

Develop multi-level abstractions to allow adaptations to interface to hardware
at different levels. Different robots have different levels of hardware sophisti-
cation where some local intelligence may be embedded in distributed micro-
controllers. Others may have inaccessible embedded processors limiting access
to only higher-level interfaces for controlling the robot. Simulations also need
similar multi-level access since each simulation may only support certain fi-
delity levels. Some may have full dynamics and device simulation capabilities
while others may only simulate kinematics and approximate device models.
In some cases, it may also be desirable to lower the fidelity level to speed up
the simulation. For example, in a rover simulation, one may interface at the
locomotion level to simulate rover kinematic motions bypassing the need to
simulate wheel dynamics.

Examples: (1) Multi-level access to a locomotor; and (2) migrating
functionality to hardware

Fig. 9 shows a locomotion example that provides access to hardware and
simulation at various levels of abstraction. At the lowest levels, the control
software interfaces to hardware or simulation using basic analog and digital
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I/O signals. A higher level would be to interface through a serial bus where
information is exchanged through formatted data packets as opposed to tog-
gling I/O signals. At an even higher level, the software interfaces to a motor
adaptation that understands motor commands. Higher levels include an in-
terface to a group of coordinated motors, a wheeled locomotor, or a general
locomotor.

Such examples not only occur with custom-built robots, but also when
interfacing to commercial-off-the-shelf robots. Consider a commercial robot
that does not provide access to individual motors. The manufacturer may
provide a software layer with an interface to only control the robot’s motion.
Thence, the concept of a motor is hidden in a layer that is inaccessible to the
user. Such a system will have adaptations at the locomotor level providing
only access to the locomotor interface as opposed to the motor or I/O level
interfaces.

To illustrate the point of migrating functionality into hardware, consider
a robot with the stereo camera pair. This robot can acquire images syn-
chronously from these cameras. A stereo processor class takes these camera
images as input and outputs a depth map. This algorithm is implemented on
the main processor and uses the images acquired by the cameras to generate
a third depth image. While the stereo processor component in this example
is a purely software component that does not interact with hardware, an-
other stereo processor component on a different system can achieve the same
capability in hardware. In the latter case, the stereo processing capability
is migrated to a microprocessor that directly interfaces to the cameras. The
stereo processor software component, in this case, is merely an adaptation to
a hardware device while in the former case the hardware adaptation is at the
camera level as opposed to the stereo processor level.

Challenge: Multi-functional Hardware Devices

What can often complicate matters is when a hardware component provides
multiple orthogonal functionalities. This is often the case when a robot system
uses distributed processors. A capable micro-controller as the one shown in
Fig. 8(b) not only provides motion control but also provides general purpose
analog and digital I/O. To complicate things further, some of these analog
and digital channels can be connected to other devices and instruments in
the system. What we end up with is a system where devices that are logically
decoupled become physically coupled. In such cases, we have a shared resource
between multiple devices but which exists as a result of a given hardware
architecture. We have to handle the physical dependency in a transparent
way to keep the logical operation of devices independent.

Solution: Separate the logical architecture from the physical architecture

Decouple the logical architecture of the system from the physical hardware
architecture. The physical architecture describes how the hardware works,
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while the logical architecture defines what the generic abstractions expect
to have. Instead of combining these two paradigms into a single hierarchy,
we recommend to separate the logical hierarchy from the hardware hierarchy
that defines the exact hardware behavior. An adaptation of the generic device
interfaces to a concrete hardware class making the mapping between the two
unambiguous. This adaptation class of the generic hardware often contains
little code but clearly shows the logical to physical mappings of functions.
This is a necessary step to bridge the logical to the physical hierarchy. Mixing
the two can lead to a single adaptation that is hard to understand, difficult to
maintain, and hard to use in a specialized application that does not need the
generic interface. Developing a hierarchy that is purely hardware specific keeps
these drivers independent of any logical hardware architecture. It also makes
the hardware specific code easily testable and more portable. This pattern
applies to motors, cameras, digital and analog I/O, instruments, sensors and
other actuators.

Even though the hardware architecture imposes constraints that result
from shared resources (e.g. sharing a bus or a processor), the software has
to manage these resources such that the overall behavior results in an in-
dependent logical architecture. To clarify this point, consider an operating
system that provides a multi-tasking environment. The operating system has
a shared resource: the processor. However, it provides the logical functionality
of parallel tasks even though at its core it manages a shared resource.

Constraints that result from shared resources are managed locally by spe-
cialized classes. This decouples higher-level software that controls logically
independent devices from the physical classes. The coupling is handled by the
specialized classes, which allocate and free up these resources.

The assumption in the above model is that these resources are needed for
only short durations. There are situations, however, where the robotic hard-
ware may have severe constraints and cannot provide a logically decoupled
architecture. In such situations, the software can try to compensate to the
best of its ability for the missing or limited hardware functionality. This is
similar to graphics acceleration cards where software compensates for missing
hardware acceleration functions. Even though the overall performance will de-
grade, the software continues to operate. A similar example occurs in robotic
motion control. If a motor controller cannot generate a motor trajectory to
satisfy the requirements of an application, instead of sending trajectory pa-
rameters to the controller, the application software sends lower-level motor
set-points to generate the desired trajectory.

Example: Motor logical vs. physical architecture

Fig. 10 shows the two class hierarchies. On the left hand side is the logical
hierarchy, which defines the generic motor functionality. While some func-
tions will be pure virtual, others will provide a default implementation. On
the right hand side is the physical architecture. In this example, the robot
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Fig. 10. Logical architecture vs. physical architecture

uses the LM629 motion control chip. The software driver for this chip can be
made generic by keeping the functions that read from and write to the chip
pure virtual. This enables the chip class to be specialized for different hard-
ware boards. The LM629 Motor class that uses this chip in a given hardware
board defines the communication interface. The Robot1 Motor class, which
inherits from the Motor class, aggregates the LM629 Motor controller. The
Robot1 Motor maps the physical LM629 Motor class to the generic Motor
class. Because the LM629 Motor class does not depend on the Motor class, it
can be tested independent of the generic hierarchy.

4.2 Hardware Components

Challenge: Class Design

Defining the proper classes, the interaction between these classes, and the or-
ganization of these classes into modules is difficult because different hardware
components exhibit different behaviors.
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Solution: Separate the specification of ”what” to do from the ”how” to do it

The classical approach in a robotic design is to separate the actuation from
the sensing (see Fig. 11). Using this approach, a framework would have a Mo-
tor Mover class and a Motor Sensor class. The Motor Mover would command
the motor to move while the corresponding Motor Sensor would read the en-
coder/potentiometer feedback and convert the motor shaft position. Another
approach is to combine the two abstractions into a single Motor class that de-
fines the capabilities and behavior of a controlled motor. These two approaches
are fundamentally different. The first decomposition does not abstract a ca-
pability but exposes elements of the motor control. But the second abstracts
the capability for controlling motors with a well-defined interface to enable
the specialization of this capability. The Motor class provides only a partial
implementation of its functionality and behavior. The remaining functionality
is implemented inside specialized motor classes that adapt the Motor class to
hardware components or to device drivers. Adaptations of motor cover differ-
ent types of controllers including servo and stepper controllers, hardware and
software controllers, and controllers with different sensory feedback such as
optical encoders, magnetic encoders, or potentiometers. What is abstracted
is not how the motor is doing the control, but rather what functionality a
controlled motor provides.

Challenge: Generalize Low-level Hardware Components

The main challenge in generalizing low-level hardware elements is maintaining
the efficiency of a custom implementation.

Solution: Generalize hardware classes for greater flexibility

Even some hardware specific components can be properly generalized to pro-
vide the necessary flexibility to replace individual hardware components for
low-level interoperability. One may consider digital and analog I/O as hard-
ware specific components that cannot be generalized or, if generalized, become
inefficient. Quite to the contrary, a large portion of digital and analog I/O
control code can be generalized with proper abstractions, inline functions and
templates to ensure a flexible and efficient implementation. Much of the digi-
tal I/O software involves bit manipulation and masking, which is independent
of the hardware.

Example: Digital I/O class Hierarchy

Digital I/O provides another example where we separate the logical from the
physical architecture. Generic digital I/O classes provide the logical mapping
of I/O lines to the various instruments. The mapping of the I/O lines to the
physical I/O ports is done through the hardware-based DIO Port class. The
DIO Port class defines methods for input, output, configuration, and masking
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Fig. 12. Digital I/O abstractions

that are pure virtual. This class serves as a base class from which the hardware
specialized ports are derived. Digital I/O boards often consist of a number
of hardware ports. These ports contain a number of I/O lines that can be
configured individually or as a group depending on the particular hardware
board. These I/O lines can be configured as input, output, or tri-stated as
both input and output. Fig. 12 shows the main DIO class, which aggregates a
single DIO Port. This pattern is known as a bridge pattern [GHJV95], which
enables both the DIO class and the DIO Port class to be specialized. This
allows inheritance along two axes: the functional (logical) axis by extending
the DIO class and the hardware axis by extending the DIO Port class. Higher-
level software now has the flexibility to control the digital I/O without being
tied to any given hardware board or driver. With this design, we can replace
any digital I/O board and re-map the I/O lines without changing to the
application software.

The DIO class handles only contiguous bits. There are situations, how-
ever, where non-contiguous groups of bits need to be grouped and controlled
synchronously. We handle these using the Composite DIO class that both in-
herits from and uses the DIO class. The Composite DIO class treats disparate
DIO lines as a contiguous block of bits. It manages the splitting and grouping
of bits to reflect the physical mapping of these I/O lines to hardware ports.
Inheriting from DIO forces the Composite DIO to be of the same DIO type
making their objects interchangeable. Aggregating the DIO class enables mul-
tiple DIO objects in the Composite IO. This pattern is known as a composite
pattern [GHJV95].

Challenge: Class Flexibility and Extendibility

Because we are proposing to develop a generic framework, the classes and their
interfaces need to be sufficiently flexible and rich in functionality to support
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the different use cases. This can lead to more complex class hierarchies that
can be hard to extend and maintain.

Solution 1: Balance flexibility with maintainability

Despite the need for generality and flexibility, it is sometimes necessary to
sacrifice flexibility for simplicity and improved maintainability. The challenge
is in defining the proper level of flexibility to match the requirements without
adding complexity.
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Fig. 13. Extending motor class functionality

Example: Joint specialization of Motor

Consider the motor example that we have presented earlier. The generic motor
class gets specialized to a hardware adaptation. By specializing the motor to
hardware, we can no longer extend its functionality. If we derive a joint from a
motor, we then have to specialize the joint to the same hardware adaptation,
thus duplicating the motor hardware adaptation. We can solve this problem
using the bridge pattern [GHJV95]. Using this pattern, a new implementation
class called Motor Impl is created as shown in Fig. 13(a). The Motor class
aggregates the Motor Impl class. Now both Motor and Motor Impl can be
extended. A joint can now be derived from Motor to provide limit checking
on the joint motions. This way a robot can use the unrestricted Motor objects
for its drive wheels and the motion-constrained Joint objects for its steering.

While this seems like a reasonable solution to the problem, it has some
drawbacks. First, all state information has to reside in the Motor Impl class
to be accessible to its adaptations. The Motor class would then become an
abstract class. Second, every time we add a new function to the Motor Impl
class, we also have to add the same function to the Motor class. This structure
can be hard to maintain if all devices in the system use this pattern. Third,
this becomes particularly difficult when the Motor class derives from a generic
Device class and the Motor Impl class derives from the Device Impl class.

In such cases, it may be easier to restrict device classes, such as motor,
camera, and IMU from functional extensions. In this case, a Joint class has to
aggregate a Motor object as opposed to inherit from it. What is lost here is
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that a Joint object is no longer of type Motor because it does not inherit from
the Motor class. The Joint class would have to then redefine the functions
that need to override the motor moves with ones that contain limit checking.
The Joint class can also return a reference to the Motor to access to the rest
of the functionality.

Solution 2: Group hardware devices into hardware maps

Because different deployments of generic robot software require different hard-
ware maps, it is important to group the hardware components into a sepa-
rate class that manages the system’s configuration. An abstract factory class
[GHJV95] can serve as a robot device map. A specialization of the device
map creates the appropriate objects using the hardware specialized classes.
For example, if the software is deployed on the physical hardware, then the
motor, cameras, digital and analog I/O classes use their physical hardware
components. If the same robot software is deployed in a simulation, then
these devices would use their simulated counterparts.

Challenge: System State

System state is unique to each robot. In most complex systems, state is dis-
tributed throughout the system in its various microprocessors. The state in-
formation in these controllers can be retrieved, but there is often a limitation
on the rate and the latency of this information. Some internal states might
not be directly accessible.
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Fig. 14. Dealing with state and state machines
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Solution: Encapsulate states in the hierarchies

To support heterogeneous robotic platforms, state information should be han-
dled in a hierarchical fashion. State would then be retrieved only through ac-
cessor functions as shown in Fig. 14. Similar to states, state machines should
also be hidden in class abstractions. Breaking this encapsulation introduces
system specific dependencies that reduce the interoperability of the software.

The states of a legged system differ from those of a wheeled system. How-
ever, the reason why software can be interoperated across heterogeneous sys-
tems is the presumption that there is a level of abstraction at which the generic
algorithm can use abstract states to control the robot.

Example: Legged vs. wheeled locomotion

Consider two robots: a wheeled rover with a passive suspension and a legged
robot (see Fig. 15). These robots can both be commanded to follow a path in
rough terrain. However, the two robots will move differently along the path.
The wheeled rover will conform to the terrain while the legged robot will
articulate its legs to move its body along the path. While both robots follow
the same path, they achieve that using different body motions. So at the
generic locomotor level, both systems are commanded to follow a path even
though they achieve that goal in different ways. The common states at the
locomotor level are the robot’s pose, the notion of a path, and the notion of
how far along the path a robot is. However, at the lower levels, the states
differ. The wheeled locomotor keeps track of the state of each wheel (distance
and steering angle) while the legged system keeps track of the joint angles for
each leg. But the robot’s pose, a higher-level state that is derived from these
lower-level states, is common to both.

4.3 Sensor Configuration

Challenge: Different Sensor Configuration

The major challenge comes from differences in sensor configurations that are
on similar physical robots. Similar robots may use different sensor configura-
tions that produce similar information. However, different sensor configura-
tions often have different physical constraints.

Solution: Use multi-level generic abstractions for the sensors in the system

By providing various levels of device abstractions, we can cope with the vari-
ability in the sensor configurations. This is particularly important as there
are multiple implementations that may achieve the same result. Some may be
available in hardware while others through software. This is best illustrated
by the examples below.
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Example: Stereo cameras vs. lidar; single gyroscopes vs. IMU

Consider sensors that generate terrain data that is represented as three-
dimensional point clouds. To generate this data, one can either use a lidar
or a stereo camera pair. While both devices eventually generate point clouds,
these two devices operate with different constraints and have different quali-
ties. A lidar requires a longer time to scan a scene but less time to generate
the depth information, while the opposite is true for stereo. These behavioral
differences generate constraints on the operation of the robot. A stereo pro-
cessing algorithm uses two images and their corresponding camera models to
generate a three dimensional map. If what we are trying to do is to get a
three dimensional map, then our algorithms should not depend directly on
a stereo processor but rather on the three dimensional map or a point cloud
source. A three-dimensional point cloud can also be generated from a lidar.
So, by depending on the point cloud source as opposed to a stereo processor,
our algorithms become generalized enabling them to work with a wider range
of sensors. If a navigation algorithm that uses this data to find obstacles was
interfaced to stereo cameras as opposed to point clouds, then it will not be
possible to use this algorithm on rovers that use a lidar sensor in lieu of stereo
cameras.

Another example is with algorithms that use a compass. A more general
algorithm would substitute its use of a compass class with the generic absolute
heading sensor class. That way, a sun sensor, which also computes absolute
heading, can be used interchangeably with a compass.

Another situation is where similar data can be produced by either a sin-
gle sensor or a suite of sensors. For instance, consider inertial motion sens-
ing. Some robots may use individual gyroscopes and accelerometers in a
unique configuration to measure the rover’s ego motions. Others may use
an integrated Inertial Measurement Unit (IMU). In the first case, the hard-
ware/software framework must ensure the synchronized acquisition and pro-
cessing of these raw measurements, while in the second case, the interface to
the IMU provides such capability as shown in Fig. 8.

4.4 Different Mechanisms

Challenge: Different Capabilities

Different mechanisms exhibit different capabilities, which have major im-
plications on how the robots move and act. Controlling and maneuvering
wheeled robots is very different from controlling legged platforms. Even among
wheeled robots, fully-steerable (omni-directional) rovers can move laterally
(crab) while partially-steerable (car-like) robot can achieve the same result
only via a parallel parking maneuver (Fig. 15(a) to (d)). Mobile robots with
passive suspension conform to the terrain with no control over their tilt while
those with active suspension have control over their tilt (Fig. 15(e) and (f)).
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Fig. 15. Different mechanisms for wheeled robots

Robotic manipulators have similar nuances. Joint configuration and degrees
of freedom result in different constraints on the maneuverability of the end
effector. Limited degree-of-freedom arms can only achieve certain poses, while
redundant arms can achieve all poses with infinite possibilities. In addition
to mobile and manipulation platforms, there are robots that are designed to
be highly redundant and reconfigurable. Handling these variations in software
requires the proper decomposition and classification of platforms and careful
generalization of interfaces guided by domain analysis.

Solution: Use multi-level model abstractions and separate models from control

Develop a generic model representation for mechanisms. Develop generalized
kinematic and dynamic algorithms that use a generic model representation.
Provide a means to override the generic capabilities with efficient specialized
ones such as specialized forward and inverse kinematics.

Separate mechanism models from controls to enable their use for resource
and impact predictions. Embedding models into the same software structure
as control makes their use outside that context very difficult.

Example: Manipulator and locomotor kinematics

Fig. 16 shows the relationship between a generic Mechanism Model and a
Wheel Locomotor Model. The Wheel Locomotor Model aggregates a Mech-
anism Model. The Wheel Locomotor Model provides generic capabilities for
forward and inverse kinematics of all wheeled robots. It also includes wheel
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Fig. 16. Separating model from control

models classes. The Wheel Locomtor Model gets specialized to specific mecha-
nisms such as a six-wheel rocker-bogie mechanism or a four-wheel rocker mech-
anism, which provide specialized kinematic solutions for their respective mech-
anisms. The Wheel Locomotor control class aggregates the Wheel Locomotor
Model class, which keeps the model hierarchy separate from the control hier-
archy. Because of this separation, a navigator that requires information about
the maneuverability of a vehicle now only relies on the Wheel Locomotor Model
as opposed to the Wheel Locomotor control class.

To illustrate the importance of separating models from control, consider a
generic manipulator control class that does not separate the mechanism model
from its control class. Rather, this class defines the forward and inverse kine-
matic interfaces in a specialized class that implements the closed-form inverse
and forward kinematic equations. Using the forward and inverse kinematic
algorithms now requires the instantiation of the arm with its motors and con-
trollers even when only the kinematic portions of that class are desired for
analyzing planned arm moves.

Challenge: Coordinate Transformations

Transformations cannot be defined in isolation and require a context that
defines the relationships between coordinate frames. This is particularly chal-
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Fig. 17. Unified mechanism model

lenging as some transformations go through articulated joints as shown in
Fig. 17.

Solution: Unify mechanism model

Without a uniform representation of the robot mechanism, sharing mecha-
nism information among sub-systems becomes difficult, inefficient and error-
prone. A unified mechanism model is the backbone for managing coordinate
frame transformations. It handles both fixed transformations and ones that
go through articulated or passive joints. It also ensures the integrity of the
mechanism information that is used by the multiple algorithms providing a
consistent representation of kinematic, dynamic and geometric information.

A flexible mechanism model will reduce code duplication for modeling
robotic arms vs. mobility platforms. It also allows the development of generic
algorithms for forward, inverse, and differential kinematics. In the absence of
specialized versions, the generic algorithms provide out-of-the-box function-
ality. However, the architecture should support specific implementations to
override generic algorithms whenever appropriate for optimal performance.

A mechanism can be represented using a tree topology in which an ar-
bitrary number of rigid bodies are connected to one another via joints. The
tree topology captures the geometric relationships between all elements in the
mechanism such as sensors and bodies, and serves as a repository of mechan-
ical model information. To support multiple clients the tree representation
has to be stateless: position, velocity, and acceleration information relative to
an inertial frame is not stored in the mechanism model. This enables various
system states to be updated at different rates and enables the use of different
parts of the tree at a time. It also allows algorithms to use the mechanism
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model tree to predict future states for any given input state. The trade that
is made here is the cost of re-computing derived states vs. making copies of
the mechanism model for each client application and keeping all their internal
states up to date.
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Fig. 18. Manipulator model and control classes

It is desirable for some applications to treat the mechanism as a whole
body (for instance when dealing with rover-arm coordination algorithms).
Some other applications may require the treatment of arms or legs as separate
elements.

A mechanism model should support serial manipulators, closed-chains,
wheeled mechanisms (Fig. 15), legged mechanisms, and composite mecha-
nisms.

Example: The Manipulator classes

Fig. 18 shows the relationships between the bodies/joints and the generic
mechanism model that are used by CLARAty . The manipulator model ag-
gregates the manipulator portions of the complete mechanism model. A more
detailed description of mechanism models can be found in [DCNKN06].

5 Conclusion

Many of these recommendations were adopted in the development of the
CLARAty reusable framework that is used by NASA. Given the heterogeneity
of the NASA research rovers, it was incumbent upon us to provide a frame-
work that did not require the redesign of existing hardware. Additionally it
was necessary to support legacy algorithms with significant investments.

Algorithms were developed at various institutions and have been inte-
grated and tested on a number of NASA developed robots. Capabilities that
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were integrated and demonstrated include motion control and coordination,
wheeled and legged locomotion, stereo vision, visual tracking, visual odom-
etry, science analysis, pose estimation, continuous trajectory following, path
planning, autonomous navigation and obstacle avoidance, and general activity
planning. We have also integrated these capabilities for autonomous end-to-
end capabilities such as placing a rover-mounted instrument on a target se-
lected from a 10 meter distance. Such capability integrates visual tracking of
the designated target using multiple rover mounted cameras while navigating
to the target location; assessing the safety of the target region; properly posi-
tioning the rover relative to the target for instrument deployment; deploying
and placing the robotic arm that carries the science instrument on the target;
acquiring the scientific data and simulating a downlink to Earth.

We have deployed and have been using CLARAty on half a dozen robotic
platforms. Fig. 1 shows a subset of these platforms, which include the custom
Rocky 8, FIDO, Rocky 7, and K9 rovers, as well as the ATRV Jr. commer-
cial platform. These platforms have different mobility mechanisms and wheel
configurations as well as different sensor suites, manipulators, end effectors,
processors, motion control architectures and operating systems. In addition to
these real-platform adaptations, we have also adapted CLARAty to operate
with the high-fidelity ROAMS rover and terrain simulator [Je04].

Developing reusable robotic software presents many challenges. These chal-
lenges stem from variability in robotic mechanisms, sensor configurations, and
hardware control architectures. They also stem from integrating new capabili-
ties that use different representations of information or that have architectural
mismatches with the reusable framework. We found that multi-level abstrac-
tion models, object-oriented methodologies and design patterns go a long way
to address the extensive variability that is encountered in today’s robotic plat-
forms. We have learned that overgeneralizing interfaces makes them harder to
understand and use. There is a delicate balance between flexibility and sim-
plicity. Performance cannot be compromised for the sake of flexibility and the
least common denominator solution is often unacceptable. It is necessary to
have flexible development environments, tools, and regression tests. Reusable
software products and processes have to be well-documented. It would be
highly desirable to standardize robotic hardware but that may not be feasible
today.

There are many challenges in software engineering that any generic frame-
work for robotics will have to address. No matter what approach is used in
the design, issues related to the effectiveness of the framework can only be
judged over time. The challenge is to find a delicate balance among flexibility,
efficiency, scalability, maintainability, and extendibility.
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